Weather-Adaptive Distance Metric for Landmark Image Classification
نویسندگان
چکیده
Visual appearance of landmark photos changes significantly in different weather conditions. In this work, we obtain weather information from a weather forecast website based on a landmark photo’s geotag and taken time information. With weather information, we adaptively adjust weightings for combining distances obtained based on different features and thus propose a weather-adaptive distance measure for landmark photo classification. We verify the effectiveness of this idea, and accomplish one of the early attempts to develop a landmark photo classification system that resists to weather changes.
منابع مشابه
Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملDynamical distance as a semi-metric on nuclear conguration space
In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملImage-to-Class Distance Metric Learning for Image Classification
Image-To-Class (I2C) distance is first used in Naive-Bayes Nearest-Neighbor (NBNN) classifier for image classification and has successfully handled datasets with large intra-class variances. However, the performance of this distance relies heavily on the large number of local features in the training set and test image, which need heavy computation cost for nearest-neighbor (NN) search in the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015